Nonlinear Model Predictive Controller Design for Identified Nonlinear Parameter Varying Model
نویسندگان
چکیده
In this paper, a novel nonlinear model predictive controller (MPC) is proposed based on an identified nonlinear parameter varying (NPV) model. First, an NPV model scheme is present for process identification, which is featured by its nonlinear hybrid Hammerstein model structure and varying model parameters. The hybrid Hammerstein model combines a normalized static artificial neural network with a linear transfer function to identify general nonlinear systems at each fixed working point. Meanwhile, a model interpolating philosophy is utilized to obtain the global model across the whole operation domain. The NPV model considers both the nonlinearity of transition dynamics due to the variation of the workingpoint and the nonlinear mapping from the input to the output at fixed working points. Moreover, under the new NPV framework, the control action is computed via a multistep linearization method aimed for nonlinear optimization problems. In the proposed scheme, only low cost tests are needed for system identification and the controller can achieve better output performance than MPC methods based on linear parameter varying (LPV) models. Numerical examples validate the effectiveness of the proposed approach.
منابع مشابه
Robust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM
This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملRobust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations
Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...
متن کاملModel Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV
This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...
متن کامل